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T he Physical Internet (PI) concept presents a radical change with the aim to revert the unsustainable practices that are used for transporting
goods. It identifies dedicated freight flows and transforms them into transparent open logistics networks which can be accessed by other

users, such as shippers and carriers. In this paper, we test the universal network openness in which the users can tap into the PI network and
place orders that will be assigned to the nearest available transport service and consequently delivered to the order sender. The objective of our
paper is to investigate the impact of inserting extra service points into existing dedicated freight flows of a service-driven company. We simu-
late different transparency levels and routings to new pickup locations and evaluate the impact in terms of altered lead times, covered distances,
and fill rates. The novel aspects presented herein are (1) deliveries based on decentralized location detection of the nearest order sender, (2)
dynamically changing speed parameters of agents within specific geographic clusters based on their geo-locations in order to account for con-
gestion levels, (3) more realistic routing strategies that consider the urban layout, and (4) transparent querying of nearest agents in space and
time that meet specific conditions such as current ongoing processes, available capacity, and position. Finally, we identify the impact from a
general/holistic perspective that emerges once extra orders are assigned to the service-driven company’s fleet.
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INTRODUCTION

Freight transport and logistics of today are environmentally and
socially unsustainable due to higher and more frequent demand.
The ambitious climate goals and higher capacity as well as
infrastructure utilization cannot be met while relying on busi-
ness-as-usual methods of freight distribution. The road freight is
expected to increase even further by around 40% by 2030 and
80% by 2050 (EC, 2016). Such current and projected market
developments call for a radical change. The Physical Internet
(PI) presents such a radical change which has the ability to
reshape how we think about moving goods from origins to desti-
nations. This need for change is addressed in the work of Mon-
treuil (2011) who terms the current situation as the global
logistics sustainability challenge. The Physical Internet (PI) con-
cept is to identify dedicated freight flows and transform them
into transparent open logistics networks which can be accessed
by other users, such as shippers and carriers. In this regard, the
longer dedicated freight movements should be decentralized and
bundled locally based on available local assets and their parame-
ters. Departing from the universal network openness, the users
can tap into the PI network and place orders which will be
assigned to the nearest available transport service and conse-
quently delivered to the order sender. Since PI is inspired by the
metaphor of the digital Internet, the goods should be routed in
the most efficient way through existing links that have available
capacities, just like message route via an open interconnected
network in the digital Internet. Our paper focuses on how this
can be done and what the implications would be when doing so.
Using other existing network requires a certain level of

transparency so that such a network can be identified in the first
place. In this respect, the Internet of Things (IoT) connects
objects via the Internet and mobile networks. These networks
can be accessed by different geo-platforms which integrate GPS
devices and sensor information in a server which then processes
the spatial and temporal attributes of objects (vans, parcels, dis-
tribution centers) and detect other objects in surrounding areas.

The objective of our paper is to investigate the impact of
inserting extra service points into existing dedicated freight flows
of a service-driven company. The impact is measured in terms of
lead times, covered distances, and fill rates. The assets of the ser-
vice-driven company (vans) seek delivery solutions locally and
deliver newly inserted orders en route. To achieve such a spatial
and temporal awareness of the assets’ and orders’ surroundings,
we combine agent-based modeling (ABM) and Geographic Infor-
mation Systems (GIS) to account for decentralized parallel pro-
cesses of agents in geographic space. In this regard, we use
object-oriented programming where agents are depicted as
objects that can roam a virtual environment. Such an environ-
ment is represented by a digital map that is today used by many
users via GPS devices for finding the best route and points of
interest. The model described in this paper can simulate informa-
tion exchange among agents that can be queried as “things” in
the IoT notion. Geo-servers that enable geo-fence and IoT inte-
gration are rather expensive, which is why our modeling
approach can mimic similar transparency systems, and assess
various what-if scenarios in a risk-free environment, to gain more
insight before empirical tests or industrial implementations. The
bundling of orders is assessed from a carrier perspective in the
Brussels Central Region, from the distribution center to the final
end consumer(s).

The paper contributes to the existing body of literature,
described in the next section, by applying simulation modeling
which depicts a more detailed time-based component (continuous
flow of time) in geo-referenced space. The novel aspects
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presented herein are (1) en route deliveries based on decentral-
ized location detection of the nearest order sender, (2) dynami-
cally changing speed parameters within specific geographic
clusters based on geo-locations of agents and the time of the day
which determines congestion levels, (3) more realistic routing
strategies that consider the urban layout, (4) transparent querying
of nearest agents in space and time that meet specific conditions
such as current ongoing process, available capacity, and position,
and (5) identification of impact on lead times and fill rates. We
simulate an integrated logistics system where orders of two dif-
ferent shippers/retailers are delivered by the same vehicles owned
by a service-driven company. The focus is not on the end-to-end
supply chain, multitier inventory sourcing, etc., but rather on the
carrier transportation performance within the last-mile delivery in
order to assess how such a PI business application could influ-
ence established/dedicated delivery processes. Such an applica-
tion also addresses the concerns of Sternberg and Norrman
(2017) who point out that all the PI-related studies do not cover
return trips, and this paper is to address such a deficiency. The
above contributions also relate to the call of Bell and Griffis
(2010) for further research on traffic patterns, variable capacity,
and en route changes.

We break the black box paradigm—where routes are prede-
fined in advance and individual decentralized logic of entities
cannot be probed during model run-time—by creating an open
and transparent assignment of orders with a higher level of
detail. This assignment is done based on geo-locations of moving
assets, their ongoing working conditions, and spatial and tempo-
ral attributes. The study considers spatial characteristics of the
built environment that govern asset (agent) movements, altered
distances caused by extra service points, a temporal dimension
such as the time of the day which changes agent speed parame-
ters in a dynamic manner, and distances to existing service
points, but also distances to newly inserted service points. The
simulations test different logistics strategies and network design
options with regard to the following:

• Order assignment to dedicated vans while considering priority
and en route deliveries. H1: Insertion of extra website orders
into existing van deliveries has a significant effect on core/pri-
ority customer orders in terms of lead times, and vans’ load
factors and distances. H2: The delivery logic (priority or en
route) has a significant effect on core customer orders in terms
of lead times, and vans’ load factors and distances.

• A new central location that serves as a PI hub. This is to eval-
uate potential decrease in lead times, higher service levels, and
lower environmental impact. H3: Location has a significant
effect on core customer orders in terms of lead times, and
vans’ load factors and distances.

• Flexible order assignment to the nearest vans that are within a
certain radius and have spare capacity. H4: Transparent order
allocation performs better than dedicated order allocation in
terms of lead times, load factors, and distances.

The motivation behind the setting is to simulate the network
transparency by assuming that vans carry sensors and share
information within their environment via IoT and GPS devices.
Our experiments mimic geo-spatial servers that are capable of
imposing conditional filtering rules and geo-fences for asset

detection and message/notification exchange among entities such
as moving and stationary assets. The variations caused by the
three factors are statistically analyzed by factorial ANOVA.

RELATED WORK AND POSITIONING

The relevance of online order placements has been gaining more
attention due to purchasing habits of customers and their require-
ments/preferences. The last-mile delivery presents a crucial
dimension when fulfilling order deliveries in a timely manner
(Esper et al. 2003; Boyer et al. 2009; Rao et al. 2011). The
online purchasing context is studied by Esper et al. (2003) who
point out the importance of carriers to fulfill orders within the
last mile. Their findings indicate higher costumer delivery expec-
tations when disclosing carrier information, especially well-
known and established carriers such as FedEx and UPS.

The link between inventory liquidity and fulfillment guaran-
tees related to service-driven companies is assessed by Rabi-
novich (2004) who focuses on the physical distribution part. In
this study, the quality depends on fulfilling the right order in a
timely manner to its right destination. The author stresses that
Internet retailers must rely on the transportation providers (carri-
ers and 3PLs) to fulfill promised order delivery times. As a mat-
ter of fact, the involvement of third-party logistics providers as
orchestrators in supply chain management is gaining more
importance (Zacharia et al. 2011).

In terms of lead times and cost, Nguyen et al. (2019) show
that customers tend to adjust their preferences and accept longer
lead times of online order deliveries if they come at a lower fee.
Most recently, Muir et al. (2019) devise a simulation model to
understand the challenge of reverse/return logistics in retail envi-
ronments. Their work calls for an alignment of return policy
decisions with reverse logistics design structures. Hence, last-
mile routings and reroutings can build on such return policy
structures once there is a certain awareness or exposure of assets
with regard to where they are and what they can do during their
return trips. According to Griffis et al. (2012), faster returns
management can contribute to higher future online purchases as
well. The Physical Internet (PI) concept could increase the effi-
ciency of order fulfillments and improve asset utilization based
on interconnectivity and information exchange.

The first formal definition of the PI (sometimes referred to as
p) was introduced by Montreuil et al. (2013) who describe it as
an open global logistics system founded on the physical, digital,
and operational interconnectivity through encapsulation, inter-
faces, and protocols. Following this notion, several authors have
published work within the PI context. Lin et al. (2014) devise a
model for selecting standard modular containers (boxes) for a set
of products. Sarraj et al. (2014) numerically demonstrate the
potential of merging container flows by interconnecting logistics
networks and protocols. An explicit research on p-containers has
been carried out by Landsch€utzer et al. (2015) who describe a
first engineering process for developing modular and multifunc-
tional load units within the fast-moving consumer goods indus-
try. Pan and Ballot (2015) demonstrate the benefits of knowing
asset positions via a framework to optimize the repositioning
open container tracing based on radio frequency identifiers
(RFID). They provide an exploratory simulation study of

2 T. Ambra et al.



inventory control models in PI. Qiu et al. (2015) propose a new
business model based on and IoT-enabled infrastructure. Darvish
et al. (2016) link the vehicle routing problem with lot-sizing
problem in order to address a more holistic production-routing
problem.

One of the first pricing models in the PI context is investi-
gated by Qiao et al. (2019) to facilitate carriers’ decision making
with regard to price propositions in a dynamic bidding environ-
ment for less-than-truckloads. As far as the inner p-hub opera-
tions are concerned, Kong et al. (2016) transform the auction
business into a new paradigm in combination with the PI. Walha
et al. (2016) study the railroad p-hub allocation problem where
the p-hub is distinguished from a classical road–rail terminal by
having modular and standard p-containers. Yao (2017) applies
the shared and open PI logistics network in the context of opti-
mizing one-stop delivery scheduling in online shopping. Venka-
tadri et al. (2016) assess the PI from a shipment consolidation
perspective by analyzing traditional distribution and consolidated
distribution within a European city network. Zhang et al. (2016)
create a new product service system based on a smart box and
propose real-time optimization via a cloud computing platform.
Zhong et al. (2016) introduce manufacturing executive system
that makes use of RFID for real-time data collection. Fazili et al.
(2017) quantify the benefits and performance of PI compared to
a conventional logistics system. Tran-Dang et al. (2017) propose
a solution that has the ability to facilitate container encapsulation
by detecting errors and providing updates. Sallez et al. (2016)
focus on the (pro)activeness and information exchange among
containers where different groping strategies within a rail termi-
nal are tested. Yang et al. (2017b) study the impact of disrup-
tions on hubs and factory plants and assess inventory model
resilience within a PI environment of interconnected logistics ser-
vices. Yang et al. (2017a) introduce a PI-based inventory opti-
mization control model. The authors propose a vendor-managed
inventory strategy where facilities and transport means are shared
based on user demands. As the purpose of this paper is not to
review all the Physical Internet publications in detail, we refer
the reader to the work of Ambra et al. (2019) and Sternberg and
Norrman (2017) who provide a more explicit overview of the
current body of literature.

Nevertheless, little research has been done in terms of order
deliveries in cities as most of the PI literature covers inner-hub
operations and large national road networks. The first PI city
application is addressed by Crainic and Montreuil (2016) who
introduce a hyperconnected city logistics idea with its fundamen-
tal concepts. More recently, Ben Mohamed et al. (2017) study
the urban transportation problem in a PI-enabled setting by using
different types of vehicles. Chen et al. (2017) make use of the
extra loading capacity of taxis to collect returned goods in a city.
These existing city applications make use of directed graphs and
analytical approaches. With regard to general urban/city logistics
applications which are not PI-related, the review by Lagorio
et al. (2016) also indicates that current applications use tradi-
tional analytical approaches which decompose system compo-
nents into separate parts and are consequently assessed
individually. This type of reductionism does not allow to capture
effects that the separated parts have in reality (Daellenbach et al.
2012; Lagorio et al. 2016). For instance, newly incoming orders
from a different order group would lead to altered lead times and

distances generated by vehicle deviations. Such deviations are
difficult to capture as linear programming models cannot gener-
ate such values in abstract modeling space during model execu-
tions.

Multimethod approaches are thus necessary to introduce more
details and accurate estimations of flows. The early work of
Campbell et al. (2001) presents a hybrid approach combining the
shortest path distance with analytical distance approximation to
assist with snow disposal in Canada. Nevertheless, their work
did not rely on digital road network databases due to the compu-
tational intensity of the network. Geographic Information Sys-
tems (GIS) can be very useful for depicting realistic distances
and routes. In our paper, the detailed routing via road vector files
(shapefiles) is possible due to the computational advancements in
recent years. In terms of new approaches, Bell and Griffis (2010)
compare the tradition heuristic Clarke–Wright savings algorithm
with a more recent metaheuristic ant colony optimization. They
provide evidence that classic approaches do not perform well
when exposed to variable spatial locations that reflect real-world
conditions. Our approach, depicted in more detail in the follow-
ing section, accounts for dispersed spatial delivery locations that
change due to customer order placements. We further include
congestion levels that are missing in actual practice, as acknowl-
edged by Donati et al. (2008) who study a time-dependent vehi-
cle routing problem.

METHODOLOGY

SYMBIT model is a computational model, which computes
freight movements based on scheduling, decentralized behavior
rules, and information flows of entities/agents. The goal of the
computational approach is to facilitate shippers’ and also carriers’
decision making by computing and estimating what-if scenarios
in a risk-free environment while considering their own lead time
and cost constraints.

The main modeling canvas is a digital map that comprises
road, rail, and iww shapefiles. The GIS environment presented
herein provides our agents with real-world locations based on the
WGS84 geographic coordinate system, having Greenwich (0, 0)
as its prime meridian. The reason behind choosing the WGS84
coordinate system is its broad application, used as a reference
system by GPS and Google Maps as well as by Microsoft in its
Bing Maps. This digital infrastructure is part of the transport
“Supply” (Figure 1, right) that also includes existing services
and schedules that induce agent movements. We have chosen
AnyLogic software as it offers ready-to-use agent and GIS com-
ponents. SYMBIT uses agents as its core elements which flow
through its subparts. The parts consist of moving and stationary
agents. The former are objects that flow between stationary
agents such as distribution centers (DCs) and retailers/end con-
sumers. Compared to abstract mathematical modeling environ-
ments, agents have the ability to roam geographic space and
record data. The advantages of using GIS for these processes
lie in more accurate and realistic routing strategies, higher level
of detail, detection of events in space and time during execution,
and efficient response actions that are facilitated by location
intelligence. In other words, the moving agents collect distance
data that they have covered or are about to cover. The data

Last-mile bundling in the Physical Internet 3



collection may be done dynamically without switching manually
to Google Maps or other providers to acquire distances. Each
agent also possesses a speed parameter that governs the agent’s
speed throughout its movement. Although there exist other
approaches that utilized GIS to depict the geographic nature of
transport problems (Campbell et al. 2001), our approach builds
on the advances in computation that allow for decentralized dis-
tance calculations during model executions (not before or after).
More specifically, technological developments have induced a
move from ESRI’s ArcMacro, ArcView, and AML to industry-s-
tandard programming and scripting languages such as Java, C++,
Visual Basic, JScript, and Python which have the ability to
incorporate GIS software libraries such as OpenStreetMap, Land-
sat, and GeoTools (Crooks and Castle 2012). GIS serve as a
medium for communicating results and assessing patterns which
we will generate by simulation runs. In general, GIS present a
modeling canvas full of geocoded information and location intel-
ligence which facilitate the movement of agents and contribute
to more informed decisions.

Model formulation

Figure 2 represents a conceptual overview of an order flow start-
ing at a distribution center agent and ending at a destination node

which can be a retailer or an end consumer. In-house DC pro-
cesses (stationary agents) comprise discrete-event modeling,
whereas movement between stationary agents is carried out by
moving agents (vans, cars, etc.). GIS provide location and rout-
ing attributes to moving and stationary agents. SYMBIT continu-
ously monitors the state of agents from the point when the order
agent is sent to the DC (Figure 2, left). It then logs the type of
transport means the order is carried by, covered individual dis-
tances, dwelling time, and elapsed delivery time which stops the
monitoring process of a specific order.

It is assumed that each agent possesses sensors that serve as
input connectors via which events e 2 E can be read. We make
use of state charts, developed by the AnyLogic company, which
are the most advanced constructs capable of describing time- and
event-driven behaviors. The triggering events E induce functions
which represent code snippets that are embedded in agents’ states
x 2 Ω. These function snippets contain decentralized algorithmic
logic (depicted in the following sections) and initiate transfers
between different xi and xj states.

Stationary agents (S) have a fixed location in space and time.
The GIS environment (Figure 3) is populated with four groups
of stationary agents labeled as Customer1 (G ¼ f0; 1; . . .; 243g),
Customer2 (B ¼ f0; 1; . . .; 214g), wholesalers
(W ¼ f0; 1; . . .; 18g), and distribution centers (DC ¼ f0; 1g).

Figure 1: General overview of SYMBIT's composition together with its inputs and outputs.
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Locations of G (Figure 3, green) represent core customers of the
logistics service provider (LSP). B locations (blue) represent
store-owners and are taken from the Atrium database—the
Chamber of Commerce of the Brussels-Capital Region. Locations
of W are selected wholesalers (red) where each b 2 B tends to
replenish its store. The last two locations are dcp 2 DC agent,
which corresponds to a PI hub (gray triangle), and dco 2 DC,
which is a van depot of the LSP (green triangle) that governs a
fleet of 20 assets. For all locations, a “Google Maps Geocode
API” is used to acquire latitude and longitude. These coordinates
determine geo-locations where S entities are created.

Moving agents (M) roam the geo-referenced environment
between S agents. The model distinguishes three types of M

agents: the fleet of assets V = {0, 1, . . ., 20} operated by dco; a
fleet of cars C = {0, 1, . . ., 214} operated by b 2 B assuming
that each b owns a car; and lastly, two sets of orders Og and Ob
where every og 2 Og is generated by group G and ob 2 Ob by
group B. The main focus of our work is on the V group that
delivers Og orders to G locations as the purpose of this paper is

to assess the vehicle performance after inserting extra orders
(Ob). Each individual moving agent v 2 V will take decentral-
ized decisions based on their surrounding context. The decisions
will be affected by the following sets and parameters that will be
used in our flowcharts in Section 4 and pseudocodes in the
appendix:

Ogcollection = {0, 1, . . ., n} = set of onboard orders og 2 Og
Obcollection = {0, 1, . . ., m} = set of onboard orders ob 2 Ob
ps = position determined by longitude and latitude
ng = nearest g location
nb = nearest b location
dng = distance to nearest g location
dnb = distance to nearest b location
Av = Boolean parameter indicating availability
Sch = Boolean parameter related to schedule
vc = vehicle maximum capacity
sp = speed parameter in km/hr

Figure 2: Illustration of SYMBIT's stationary (DCs, retailers) and moving (vans, cars) agents.

Figure 3: Study area depicting the geographic region of Brussels and its municipalities.
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The parameters and variables listed below compose the main
KPIs generated by the model:

• vd = total distance covered by each v 2 V
• Tvd = total distances covered by fleet V
• vlf = vehicle load factor
• Ld = lead time of an order (og and ob)

Equation 1 summarizes all the distance that will be generated
by every van agent. As the distances are not predefined in advance,
and the nearest locations are changeable as they depend on the
geo-local context of each v agent, equation 1 will summarize the
covered distances upon the van’s arrival at dco. The ng and nb are
taken from the Ogcollection and Obcollection from which the van agent
v queries orders and compares distances to their delivery locations
from a decentralized perspective after each delivery. The return-
distance is depicted by dist||dco - 1 ? dco|| which means that the
distance to the dco is calculated from the last known location of
the van before returning to dco (this can be dngn or dnbm, depend-
ing on the imposed delivery policy). Equation 2 then consequently
calculates the overall distances generated by the LSP’s fleet (V).

vd ¼
Xn
i¼1

ðdngi þ . . .þ dngnÞ þ
Xm
j¼1

dnbj þ . . .þ dnbm
� �

þ disztjjdco � 1 ! dcojj ð1Þ

Tvd ¼
X20
i¼1

vdi ð2Þ

Contrary to equation 1 which is van-specific, equation 3 is order-
specific; it accumulates order lead time of og (Ldog) determined by
the van’s travel time and its working conditions (loading/unloading).
The same applies to external orders where og is replaced by ob in
equation 3. As the deliveries will depend on the policy (priority or en
route) introduced in Section 4, x in dnx can be any proceeding order
location that has higher priority or is closer than og 2 Ogcollection.
The real-time simulator records the delivery time upon van’s arrival
at the order’s geo-location and subtracts the order placement time
represented by an event e that occurred at time t (et). The dng repre-
sents the location which is embedded in each og.

Ldog ¼
Xog
i¼1

ðdnxi þ . . .þ dng
sp

Þ � et ð3Þ

The final parameter determining the Ld is sp that governs how
fast a van moves through the GIS space. In this regard, Sec-
tion 3.2 elaborates on how the speed is dynamically adjusted via
geo-fences, and Section 3.3 sheds more light on the load factor
calculation (vlf).

Geo-fencing and speed adjustment

When V agents move through the environment from/to S, it is
unrealistic to use a constant average speed parameter. Therefore,
we deploy geo-fences that probe the sp parameters of vans. In

order to determine what speed corresponds to a municipality, we
sampled historical data from commercial map providers. The sp
parameter that governs the movement of M is deduced from dis-
tances and elapsed times by applying basic physics

sp ¼ d
t
� 3:6 ð4Þ

, where d is distance in meters and t is elapsed time in second.
Factor 3.6 is used as a conversion to acquire km/hr. We measure
d within every cluster from the cluster’s four edges to the cen-
troid. The t is obtained from the commercial map provider who
offers elapsed time given traffic congestion during different times
of the day. Alternatively, speed profiles can be used for govern-
ing M agents’ sp parameters by the properties of the route poly-
lines. However, these polylines contain maximum allowed
speeds but no realistic daily speeds. The proposed geographic
clusters are characterized by a list of latitude–longitude pairs.
Since M agents may roam this geographic space, the sp parame-
ter can by dynamically probed while moving; once an agent
enters a certain geo-fence, a matching algorithm is deployed to
compare x- and y-coordinates of the agent’s location with the
cluster’s latitude–longitude pairs to identify which speed each
agent has to adapt. Another parallel algorithm monitors the real-
time simulator in order to switch speed values according to the
time of the day (Table 1). This ensures that morning, noon, and
afternoon deliveries reflect realistic congestion levels. The rout-
ing and service points are not predefined in advance since Ob

orders can be delivered by a different agent based on its current
position and ongoing process in space and time. For this reason,
cluster speeds may be more advantageous compared to prede-
fined individual speed profiles per entity. The van agent’s speed
logic could be also linked to an API that fetches real-time data;
however, this approach goes beyond the scope of our paper.

Object detection and load factor calculation

Given the decentralized nature of agents, load factor calculations
may be carried out bottom-up without averaging, hence losing,
individual specificities that are generated at the local level. In
other words, equation-based or analytical models do not generate
movements themselves, but use observables that “are moved” by
the high-level system. Van agents store their distances they cov-
ered but also the objects they carried and unloaded. Given such
an object-oriented approach, the vehicle load factor vlf is calcu-
lated as

vlf ¼
Xn
i¼1

Dlfi

vd
� Lfi

� �
þ . . .þ Dlfn

vd
� Lfn

� �
ð5Þ

, where Lfi is load factor of the first delivery, Dlfi is distance trav-
eled with Lfi, and vd is the total distance. To elaborate further on
this, example A in Figure 4 depicts the vehicle load factor as
vlf ¼ ð0:5� 80%Þ þ ð0:5� 0%Þ ¼ 40%. However, the number
of stops may vary as individual vans receive a different amount
of generated orders. In this regard, example B provides a more
accurate representation that is relevant to our case study.

However, the load factor does not always have a decreasing
trend in function of distance and unloading, but can be increased
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in case the v departs to the centrally located dco to collect Ob
orders; after the last destination (D3), the load factor will
increase once the van collects an order from the central DC until
the extra customer destination (not shown). The overall vlf per
trip is calculated upon the van’s return to the DC once we know
the total distance. In our case application, one order represents
20% of the vans capacity which makes the total van capacity
(vc) limited to 5 orders.

EXPERIMENTAL DESIGN AND RESULTS

To demonstrate the abilities of SYMBIT, the model is applied to
a case which considers existing vans with spare capacity that are
physically present in the city (Figure 5, number 4). These vans
transport “air” most of the time, which is why orders from B
locations are considered to utilize the spare van capacity and pre-
vent B group from going to the nearest wholesaler w 2 W to
replenish (number 3). The c 2 B car trip (number 2) from its ori-
gin location b 2 B (number 1) can be avoided by placing an
order (ob) via a retail platform; the order will be consequently
delivered by the van (v) of a service-driven company (dco). This
prevents the customer from set B from using his/her car to travel
to the nearest wholesaler to replenish. The initial location of cars
C is evenly distributed among B locations, assuming that each
store-owner has one vehicle at his/her disposal.

Van agents V are the core elements governed by the experi-
mental design depicted in Figure 5. The study uses order genera-
tion based on Kin et al. (2018); one single customer in G group
generates demand up to three times per day, whereas stores B
replenish 3–6 times per week by going to the nearest wholesaler.
We converted this rate to daily generation between 0 and 2 times

as our simulations terminate after one day. The model run-time
is confined to one day given the computational power required
for agent speed control and geo-fencing. The general experimen-
tal design consists of four simulations (Figure 6) that are textu-
ally described in the following subsections. More detailed
pseudocodes are provided in the appendix.

The simulation descriptions and results are streamlined in a
form of “simulation description? results, simulation descrip-
tion? results, etc.” The simulation output produced by our com-
putational model is assessed by a statistical analysis. This is
carried out by means of ANOVA as running multiple t-tests
would increase the type 1 error rate (alpha error)—higher proba-
bility that we will reject the null hypothesis when it is in fact
true. We thus used a factor significance test ANOVA to assess
the interaction effect of the factors on the dependent variables.
The following subsections describe these effects per dependent
variable. Significance level of .05 is used which relates to confi-
dence intervals of 95%. Furthermore, Bonferroni confidence
interval adjustment is deployed to compare main effects of the
mean values. To ensure comparability, each simulation is exe-
cuted by using a fixed random seed for numbers taken from the
uniform distribution functions which mainly concern the demand
generation function; this is to account for reproducible and com-
parable simulations. Hence, parametric variations are taken into
account and are consequently assessed statistically. In this regard,
our model does not include parameter values with stochastically
fluctuation values that would require multiple model runs and
Monte Carlo experiments.

The simulation logic and results are presented in the following
order: The status quo is reproduced in Section 4.1. Simulation 1
description and results will be conveyed when inserting extra ser-
vice points and carrying out deliveries en route or priority

Table 1: Speed parameters (km/hr) per each geographic cluster during a given time of the day

Cluster 8–10 hr 10–12 hr 12–14 hr 14–16 hr 16–18 hr 18–20 hr

Brussels 10.4 11.4 12.9 12 14 12.8
Schaerbeek 16.5 16.5 16.5 18.5 14.6 16.5
Etterbeek 12.6 15.7 15.7 15.7 12.6 12.6
Ixelles 13.3 18.4 18.4 18.4 16 17.1
Saint-Gilles 13 13 13 13 12 13
Anderlecht 16.8 13.5 13.5 12.4 12.4 16.2
Molenbeek-St-Jean 15.7 18.7 18.7 16.6 13 17.6
Koekelberg 14.4 13.1 13.1 14.6 12 13.1
Berchem-St-Agathe 18 18 16.6 15.4 14.4 18
Ganshoren 13.2 16.5 16.5 14.6 13.2 16.5
Jette 20 17.1 18.4 17.1 16 17.1
Evere 18.4 18.4 17.3 19.7 16.2 18.4
Woluwe-St-Pierre 27.6 30.6 30.6 30.6 30.6 25.1
Auderghem 14.5 17 20.4 18.5 12.6 20.4
Watermael-Boitsfort 22.3 24 24 24 18.4 24
Uccle 16.2 40.5 40.5 21.6 19.1 27
Forest 18.9 22 22 18.5 13.2 20.3
Woluwe-St-Lambert 18.5 22 26.4 22 26.4 22
St-Josse-ten-Noode 10 12 13 11.1 7.8 13
Ringroad 31.4 61 61 54.9 36.6 54.9
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(Section 4.2). Thirdly, the extra Ob order insertion and results
with different DC locations will be presented in Section 4.3.
Lastly, Simulation 3 logic and results are described where the
focus is on transparent allocation and its impact (Section 4.4).

Status Quo (S0)

This subsection reproduces the base scenario that will be later
used for comparing the implications of different parameter varia-
tions. The business-as-usual case (status quo) depicts B agents
replenishing at the nearest wholesaler W by using their own
assets C. In parallel, van agents (V) deliver to their customer
locations (G) who generate orders (Og) with embedded geo-coor-
dinates of their origin. This demand is defined by a uniform dis-
tribution function with bounds between 0 and 3. The V agents
are initiated by a service schedule Sch that starts at 8am, and C
agents initiate according to schedule WGsch which indicates
opening hours of W from 08:30 until 20:00.

The van agents are initiated by the service schedule (Sch)
that starts at 9am, and they consequently follow processes dis-
played under status quo depicted in Figure 6. Once a matching
algorithm assigns orders to corresponding vans based on zip
codes, the van agent calculates all distances to the order desti-
nations and departs to the nearest one by route (the road lay-
out is considered and not a straight line). After unloading, it
recalculates all order distances from its new geo-location and
moves to the next nearest order location. If the van’s order
list queue (Ogcollection) is empty, the van agent returns back to
the dco. The calibration and validation of van agent move-
ments were conducted in comparison with operational log files
provided by the service-driven company. The log files con-
tained detailed time stamps regarding the vehicle stops, igni-
tion on and off events, closing and opening of vehicle doors,
and delivery durations between stops. Such time events
enabled us to calibrate and validate the agents to closely
mimic realistic delivery conditions.

Figure 4: Conceptual overview of load factor calculations for a vehicle round trip. O and D depict origins and destination.

Figure 5: An illustration of overlapping flows that are to be eliminated.
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Pseudocodes in Appendix A.1 provide more detail with regard
to the simulation logic. Having established these dedicated flows,
3 factors will be introduced in order to assess how the current
structure would be impacted and whether the impact is of signifi-
cance. The factors, evaluated in the following subsections, are
location (outside, central), external website orders (10%, 25%,
50%, 75%, 100%), and delivery logic (priority, en route, dedi-
cated, transparent). The impact is measured in terms of distances,
lead times, and fill rates.

Simulation 1

Simulation 1 (S1) varies the delivery logic factor and ob Web
orders that are placed by Customer2 group from B locations. The
order (ob) placement and replenishment processes of B agents
are executed at the same time. Once the online order is received
at dco, the matching algorithm inserts the ob agent into v 2 V
that corresponds with the ZIP code. Algorithm 3 thus provides
input for Algorithm 4. We refer more interested readers to
Appendix A.2 that contains the two algorithms as well as more
information on how the ob variations are computed. As far as
the delivery logic is concerned, S1 applies priority-based and en
route deliveries (Figure 6). The former, priority-based, means
that individual v agents (vans) deliver to their core customers
first (og 2 Ogcollection). As soon as the Ogcollection is empty,
which is an array list of og orders that the van has onboard, the
extra online orders (ob 2 Obcollection) are delivered to their corre-
sponding B locations. The van agents consequently return back
to dco. In the latter setting, en route, a decentralized algorithm
queries all the order locations (b and g) in geo-referenced space,
and the van agent recalculates and compares distances to each
one of them from its individual location which changes after

every order delivery. In both cases, priority and en route, the van
agents have loaded the extra ob Web orders at the dco. Based on
the simulation composition, certain assumptions are made to set
the scene in terms of expectations. These expectations can be
accepted or rejected by our simulations. Thus, the following
hypotheses are posed:

H1 : Insertion of Ob website orders into existing van V
deliveries has a significant effect on core customer Og
orders in terms of lead times, and vans’ load factors and
distances.

H2 : The delivery logic (priority or en route) has a
significant effect on Customer1 Og orders in terms of
lead times, and vans’ load factors and distances.

S1 Results and Discussion: Impact of extra service points and
delivery logic
Let us recall that the impact is studied from the LSP’s perspec-
tive and the results indicate performances of V agents (distances,
load factors) and Og orders (lead times). Simulation results for
lead time (Figure 7, left) show a significant increase in Custo-
mer1 order deliveries when inserting extra service points of B
locations (p = .000). In order to establish the stage at which the
variance becomes significant, pairwise comparison is used that
indicates 75% of orders as a threshold (p = .008) when the extra
service points start to have an impact on the core Og deliveries.
This means Og orders are not substantially affected if the ser-
vice-driven company receives 50, 25, or 10% of website orders
from B locations. In terms of delivery logic, Figure 7 (left)
shows slightly better performance when Og orders are delivered
as priority, and the delay increases with en route as vans attend

Figure 6: Schematic overview of the business-as-usual case (status quo) and 3 experimental simulations and their composition.
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to B locations of Ob orders first, if they are closer. This slightly
increases the delay of core orders Og (blue line) since vans devi-
ate from their original route. However, the variance between en
route and priority is not significant (p = .177).

Figure 7 (right) depicts van load factor variations. Website
orders (p = .216) and delivery logic (p = .688) have statistically
no significant effect on the van load factors when following priority
or en route delivery logic (left). Furthermore, both order groups are
delivered from the outside DC location (dco), as a result of which
vans still cover a lot of empty kilometers on their return trips.

En route deliveries are visually more efficient in terms of kilo-
meters (Figure 8, left) but the statistical analysis yields insignifi-
cance (p = .743). The rapid decline in distance from 75% to

100% can be explained by the spatial attributes of the urban lay-
out and the routing algorithm used by our vans. The vans follow
the fastest route, and a smaller amount of orders located on the
western side of Brussels will result in vans taking the ring road
to reach the order’s delivery geo-locations. However, with more
orders entering the scene, some vans are “dragged” closer to the
center of Brussels from the clusters’ peripheries. This is an inter-
esting emerging phenomenon that causes the vans to ignore the
ring road and take the inner roads instead, when returning back
to dco. To address our posed hypotheses, website orders of B
locations do have a significant effect on core Og lead times start-
ing from 75%, but no significant effect is observed regarding
load factors and distances. The delivery logic does not signifi-
cantly affect lead times, load factors, nor covered distances.

Figure 7: Average lead time of Og orders in hours after insert-
ing Ob website orders of B locations in combination with deliv-
ery logic (left) and van V load factors (right). The horizontal axis
represents the percentage of inserted orders.

Figure 8: Average distances of vans in kilometers after inserting
Ob website orders in combination with delivery logic (Simula-
tion 1) and location (Simulation 2).
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Simulation 2 (S2)

Unlike the previous simulation (S1), the ob Web orders are not
loaded at the dco but must be collected at the central dcp location.
The central location is perceived as a new PI hub which is located
in the port of Brussels. S2 thus measures the performance of the
van fleet (V) when deviating to the dcp. As shown in Figure 6,
once all core customer orders (og 2 Ogcollection) are delivered and
there exist ob orders to be collected by the van that services the
geo-cluster/municipality, the van does not return back to dco, but
drives to dcp. It then collects the ob orders, delivers them to their
b locations by choosing the nearest, and returns back to dco.
Appendix A.3 sheds more light on the procedure and S2 output.
Our third hypothesis concerns the DC location (H3):

H : Location has a significant effect on core Og orders
in terms of lead times, and vans’ load factors and
distances.

S2 Results and Discussion: Impact of deviating to central
location
As far as the location factor is concerned, distance variations are
also not significant (p = .472). Although there is a visual differ-
ence once the vans deviate to the central dcp to collect Ob web-
site orders (Figure 8, right), the variations are negligible. These
variations in van distances do not follow a clear pattern. En route
deliveries are visually more efficient in terms of kilometers, but
the statistical analysis yields insignificance (p = .743). Website
orders also do not affect traveled distances (p = .792). This is a
promising results showing that extra orders do not necessarily
generate substantially more driven kilometers if vans collect Ob
Web orders from the central dcp location (PI hub).

Regarding the delivery times (Figure 9, left), lead times increase
once vans do not load Ob orders at their depot (outside dco loca-
tion) but need to travel to the central dcp location to collect the
orders. The deviation leads to a significant increase in core Og
order lead times (p = .012) as vans spend more time in the city and
return back later to their depot to collect new Og orders.

Unlike in S1 where the load factor did not change at all, in S2
the load factor increases significantly (p = .000) when vans
decrease empty kilometers by going to the central dcp (Figure 9,
right) and consequently deliver Ob orders. In other words, the
vans cover less kilometers transporting “air.” In relation to our
hypothesis for S2, the location does have a significant effect on
lead times and it substantially increases load factors of vans
without significant variations of covered distances. It can be
inferred that the LSP’s assets may cope sufficiently with an
influx of Ob orders until 75% without severely affecting Og lead
times. Load factors increase significantly more when collecting
extra orders from the central location.

Simulation 3 (S3)

The last simulation (S3) omits dco and considers only the cen-
tral dcp location. It simulates 2 different order allocation and
notification schemes as indicated in Figure 6: Firstly, the cen-
tral dcp (PI hub) notifies dedicated vans that serve the specific
clusters/municipalities where the Ob come from. Secondly, the
Ob allocation is carried out in a transparent manner when the

central dcp has the ability to spatially detect the nearest mov-
ing agent, but also the number of orders/objects the van has
onboard. It then requests the nearest van agent with the lowest
number of orders onboard. This case works with an assump-
tion that vans carry sensors and share information within their
environment. In this regard, “Do you see what I see?” refers
to the level of transparency the 2 allocation schemes in S3
have, in which the first allocation logic (dedicated) is not
aware of nearest vans and their parameters and the second
allocation logic (transparent) is. The pseudocode is provided in
Appendix A.4. The last simulation is to test our fourth hypoth-
esis (H4):

Figure 9: Average load factors of vans in % after inserting web-
site orders of Customer2 in combination with delivery logic (left)
and DC location (right).
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H : Transparent allocation/delivery logic performs
better than dedicated allocation/delivery logic in terms of
lead times, load factors, and distances.

S3 Results and Discussion: Impact of spatial detection and
transparent allocation of orders from a central (PI) location
This section concerns dedicated and transparent order assign-
ments/deliveries from the central location with a goal to evaluate
which dependent variables benefit from transparency and trans-
parent order allocation to vans with exposed parameters such as
fill rates and geo-locations. Also the lead times of Ob are dis-
played, to demonstrate the impact of transparent allocation on
both order groups. The previous sections excluded Ob lead times

as the focus was on the Og and LSP’s fleet performance,
whereas in this subsection, we intend to demonstrate how trans-
parent allocation impacts both groups within the PI context. In
other words, the Ob lead times serve as an argument when com-
paring both lead times in order to justify why the dcp could or
should be located more centrally. In the previous section, we
established that the amount of Web orders has a significant effect
on Og lead times starting from 75%. Figure 10 (left) illustrates
that transparent order allocation (green) to the nearest van with
the lowest fill rate causes a significant (p = .020) increase in Og
order lead times. On the other hand, transparent order allocation
has stronger significance (p = .000) by decreasing Ob order lead
times (right). Based on the visual inspection of the figure below,
transparent deliveries are less severe for core Og orders (left)
than dedicated deliveries for website Ob orders (right). In this
regard, transparent allocation can benefit mainly the group of Ob
orders with a slightly lower delivery performance for the Og
orders. This development could attract more users to join the PI
open network due to better service levels, and additional delays
of core Og orders could be offset by additional revenues gener-
ated by new customers. Extra fleet or additional service-driven
companies could also mitigate the burden of extra order influx.

In terms of load factors (Figure 11, left), the amount of Web
orders does not cause wide variations (p = .429), as also
described in the previous section. However, the delivery logic
does affect the load factor (p = .000) where transparent alloca-
tion, perhaps surprisingly, decreases the load factor compared to
dedicated allocation. This can be explained by the already low
amount of orders in the vans that were passing by the central
DC. In other words, orders that would be normally allocated to
dedicated vans, hence increasing overall fill rates of rather full
vans of specific clusters, are now allocated to nearly empty vans
that serve not so dense clusters. This setting thus contributes to
more kilometers traveled with lower fill rates. A testament to this
fact is provided by the same figure (right) which indicates that
vans start generating more kilometers as the central location
agent assigns vans to Ob orders which may be located in two
different clusters, subsequently increasing vehicle kilometers.

As far as H4 is concerned, transparent allocation has a signifi-
cant effect on lead times as well as on vans’ load factors. Dis-
tances are not substantially affected by the transparent delivery
logic. The transparent allocation does perform better for Ob Web
orders but does not perform better for the core Og group and
van load factors. The transparent allocation can be perceived as a
good selling proposition in terms of Ob lead times at the expense
of lower fill rates and slightly more kilometers. The fill rate var-
iations are significant, but the extra distances are not. From an
environmental point of view, a rather stable amount of kilo-
meters and lower fill rates may emit less pollutants compared to
more loaded vans. In fact, the transparent delivery logic is faster
for Ob group of orders, does not yield significantly more kilo-
meters, and could emit less pollutants. From a general perspec-
tive, the vans are still present in the city anyway, but they
eliminate car (c 2 B) vehicle kilometers (vkm) to the nearest
wholesaler (Figure 12). It can be observed that despite the vkm
increase in vans caused by extra service points (blue), the car
vkm (orange) of B locations overcompensates for this increase,
which, in fact, results in a general decrease in total vkm from a
general perspective (gray). Hence, such a development may lead

Figure 10: Average lead times of Og (left) and Ob (right)
orders in hours after inserting website orders of B locations in
combination with delivery logic.
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to a reduction in the amount of vehicles in cities and less exter-
nal effects such as congestion, noise, and emissions.

Having a reliable and fast service offer will convince new
users to place an order within a PI-like network instead of using
their own transport means for individual replenishments. An
alternative to this approach is to follow the dedicated allocation
which generates higher fill rates, but also significantly higher
lead times for newly incoming Ob orders that could consequently
cause a reverse effect and decrease the probability of customers
from the B locations to place an order online. However, this
would be at the expanse of slightly lower service levels for the
core Og orders; in this regard, the core customers (G locations)
would have to relax their strict time windows and accept slight
delays caused by deviations to B locations.

CONCLUDING REMARKS

Research implications

Our work presents decentralized and autonomous allocation in
geographic space that allows for testing various delivery logics
in a more realistic manner within a risk-free environment. The
contributions fill the gap on the inclusion of congestion levels,
variable vehicle capacity, and en route changes that are echoed
in Bell and Griffis (2010). Compared to mathematical/analytical
approaches, an object-oriented agent-based model can capture
more details and make moving entities aware of their surround-
ings. Such a level of agent decentralization linked to spatial and
temporal awareness of surrounding entities as well as information
can offer higher accuracy and more precise forecasts of emer-
ging, and not-yet-well-understood, phenomena. In other words, a
simulation study can help identify risk and find more robust
solutions before pilot implementations.

In terms of geo-fencing and speed adjustment, data fetching
tools could be connected to provide constant/continuous speed
monitoring when deployed for other days or seasons of the year.
Our geo-fences do not necessarily need to have a speed govern-
ing purpose only, but may be transformed into a notification
source that notifies costumers or DCs about van’s location and
their estimated times of arrival. As IoT promises better visibility
of operations and improved control over assets by remotely diag-
nosing problems and inducing diversion of an in-transit ship-
ment, it is also noted by Goldsby et al. (2019) that emerging
technologies are depicted mostly by the “promise” or “potential”
terms which can prove to be hard to capture. The study pre-
sented herein offers quantification of the “promised” transparency
levels and the implications they have on asset performances. As
for the Physical Internet applications, our study could be linked
to the existing body of literature, which focuses on inner PI-hub
operations, by allowing hubs to proactively adjust their local
solutions once they become informed about asset arrivals. Given
the fact the simulations yielded positive results when introducing
the PI hub closer to the consumers, it may serve as a starting
point to link urban flows (perceiving city operations as the local
“intranet”) to interregional flows (perceiving these longer dis-
tance flows as the physical “Internet”). The PI-hub location is
centered within the port of Brussels which can serve as a conflu-
ence of interregional shipments being carried by inland water-
ways and urban shipments to account for synchromodal door-to-
door solutions. In fact, such a link could reduce road congestion
in Flanders (around Brussels) by decreasing truck movements
and inducing more barge movements.

Future research could focus on extending our work by
accounting for CO2 and PM emissions. More complexity could
be also included in the current solution where vans do not collect
orders from the central location after priority-based orders are
delivered, but carry out this collection when the vans pass nearby
the hub. This type of en route collection setting would require
the experimental design to shift from “soft” allocation, where the
matching algorithm notifies the van with the lowest fill rate to
collect a new order after delivering all orders onboard, to “hard”
allocation, where the algorithm is less benevolent and takes the
first nearest van passing nearby the PI hub regardless of the
van’s ongoing process or the amount of core customer orders

Figure 11: Average load factors of vans in % (left) and average
distances of vans (right) in kilometers after inserting website Ob
orders of B locations (left).
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onboard. Furthermore, the vans recalculate the distances to the
next order from their decentralized location when unloaded, and
depart to the nearest one by route; future work can address time
windows of these orders (release dates) and include delivery
duration priorities rather than focusing on shortest distances to
the order locations.

Managerial implications

From the core customer group (G) perspective and its LSP, the
service-driven company’s fleet is impacted once 75% of new
customers (B) place an order. In other words, the number of LSP
assets becomes critical. It does not matter whether the orders are
delivered in a priority-based or en route fashion. This means the
core business of the service-driven company does not have to be
necessarily affected as the core customers may be delivered as
first, provided the extra orders do not exceed 75%. When the
extra Ob online orders are collected from the LSP’s depot, the
load factors do not increase as return trips are still empty. In this
regard, the best way to increase load factors is to collect Ob
orders from a central location which is also beneficial to the B
group in terms of lead times. From the perspective of the B
group, transparent allocation generates faster lead times.

According to Rabinovich (2004), the Internet retailers can cre-
ate new businesses by promising a fulfillment performance that
reflects the actual performance. We captured implications newly
incoming orders can have on the transport service provider. The
transport provider in this case is the power house that accounts
for actual performances, which is also why detailed simulations
are relevant to assess the implications of new logic to depict, or
come close to, the actual performance when promising certain
service levels online. Querying multiple carries in an automated
manner can provide higher service levels and more robust solu-
tions in case of disruptions or unforeseen events when delivering
orders. Once extra order insertion exceeds the 75% threshold,
additional service-driven companies, taxi services, or crowdsour-
cing solutions could ameliorate delivery times and provide more

reliable and faster service. Alternatively, longer lead times can
be justified by lower delivery fees as a result of goods bundling
and higher fill rates, as the study of Nguyen et al. (2019) shows
positive acceptance levels of consumers when trading shorter
lead times for lower delivery fees. The central PI-hub location
would be beneficial to these potential new service providers as it
is located closer to the customer demand.

In terms of application transferability to other geographic
regions, higher delivery-related expectations are assigned to car-
riers that have higher consumer awareness such as FedEx, Air-
borne, and others in the United States (Esper et al. 2003). Such
carrier exposures online may undermine the potential in order-
delivery efficiency if nearest assets are ignored even though they
could provide a better service. Omitting smaller and less known
carriers at the expense of established brands can result in missed
opportunities. The PI is thus a black box-like delivery solution
where the carriers do not necessarily have to be exposed to the
customer when ordering online. If costumers ease their expecta-
tions, the carriers will gain more time for consolidation and
bundling. In relation to Griffis et al. (2012), Sternberg and Norr-
man (2017), and Muir et al. (2019) who depict the importance of
returns logistics, the Physical Internet context demonstrated in
our work can be linked to the identification of vans/agents roam-
ing in the city, and query their working conditions and current
states for the purpose of return flows. In this regard, insertion of
return requests could be dynamically added to the routing of
assets that are located nearby and have a similar delivery loca-
tion as the product to be returned. The Physical Internet network
could thus offer alternatives to consumers to return their items
when purchasing online.

Our work illustrates that private car journeys can be eliminated
by existing service flows of a service-driven company with rea-
sonable delays incurred in their priority flows. From a general
perspective/holistic point of view (Figure 12), not only could the
negative impact of freight logistics and private mobility be
reduced to zero, but it could also become negative, when com-
pared to status quo. However, this research avenue still needs

Figure 12: A general perspective depicting total vehicle kilometers(vertical axis) of cars and vans within a city as a reaction to increas-
ing percentage of inserted Ob online orders (horizontal axis) of customers from B locations.
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more consideration in terms of used vehicles and engine types
combined with our load factors and driven kilometers. In reality,
service-driven companies can use the decentralized local detec-
tion via GIS platforms that provide real-time updates of asset
locations and their parameters. Such platforms allow to impose
geo-fences to receive notifications and messages once moving
assets enter a certain catchment of a DC or any other location.
Such allocations can be tested with the resource pool of a single
service-driven company, or with combined assets of more com-
panies with similar flows in the area.

In conclusion, given the manifestation of new technologies
and increasing customer requirements, facilitating decisions of
logistics service providers and retailers can become rather chal-
lenging as vehicle routing problems become more and more
complex. Current routing software does not have the ability to
detect nearest assets and order senders, which makes new deliv-
ery practices rather untested. Hence, deployment of untested ser-
vices can result in higher risk and potential money losses if not
pretested in risk-free environments. This is where simulations
can contribute to create a quantifiable basis for introduction of
new technologies and delivery approaches, prior to investments
and consortium commitments. To make the agent-based simula-
tions in GIS more actionable, current transport management

systems (TMS) can be connected to simulation modules in which
the proposed logic in this paper could be realized. In such a case,
the van agents can serve as digital twins that take over the geo-
locations and working conditions of physical assets (physical
twins) via sensors and IoT devices for the purpose of assessing
future developments and potential routing and bundling opportu-
nities. After evaluating multiple scenarios in parallel, the simula-
tion module can return information or process specification back
to the TMS to be executed in the physical system (real world).
The virtual environment can then adapt and shift along with the
physical environment. This actionable element that connects the
virtual simulation environment to the real physical system will
be studied more explicitly by the authors in their future endea-
vors together with several companies. Connecting research and
models with companies will be crucial in order to translate the
Physical Internet into daily use. Besides academia, the PI will
also need more industrial and governmental leadership. The
industrial and governmental involvement is gaining traction as
more industrial players and governmental representatives (such
as the European Commission) participated and presented palp-
able steps and support at the latest IPIC 2019 conference held in
Westminster, London, as compared to earlier events that
addressed more of the theoretical aspects of the concept.

APPENDIX A

When M agents move between S agents in GIS space, they enter a movement state xm 2 Ω. Therefore, xm(.) means that agents are
moving toward a destination between the brackets (.). The following expression ‖.‖ is the distance between two points in geo-referenced
space. This space consists of vector files, also known as shapefiles in GIS software. The distances M agents cover are recorded after
reaching an S agent. Parameters such as WGsch and Sch are Boolean parameters indicating opening hours: true if open, and false when
closed.

Simulation 0

Algorithms 1 and 2 run in parallel, but do not affect each other. Simulation A.1 sets the scene by reproducing the baseline setting where
orders are not combined or inserted into vans. Algorithm 1 simulates replenishment of Customer2 group (B) and Algorithm 2 the deliv-
eries to Customer1 group (G) by vans (V).
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Simulation 1

Simulation 1 executes Algorithms 3 and 4 in parallel. The distribution center that presents a static parameter is located outside of Brus-
sels (dco), whereas the delivery logic (en route and priority) and ob Web borders (10%, 25%, 50%, 75%, 100%) are varied. Every store
has a local Boolean parameter named OrderOnline directly linked to a parameter called OnlinePreference. This parameter contains val-

ues of type double between 0 and 1. A RandomTrue Java function is used to generate random numbers between these bounds where 0
is the lower and 1 is the upper bound. For instance, values between 0 and 0.5 indicate false and between 0.5 and 1 true. The bounds
and the random numbers generated within the bounds are depicted by a uniform distribution function. If the function generates 0.786,
the condition is more likely true and a b 2 B is keener on ordering via the website, which will be delivered by the service-driven com-
pany. If the function generates 0.221, the condition is more likely false and the b 2 B will depart to the wholesaler. For instance, based
on a sample of ten decision events, a website preference of 0.221 would result in approximately three website orders and seven whole-
saler trips. The randomness is further elaborated on in Appendix B.
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Simulation 2

Simulation 2 executes Algorithms 3 and 5 in parallel. In this case, the ob Web order variations and location variations are taken into
account. The delivery logic is static, applying priority deliveries to Customer1 orders from Ob.
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Simulation 3

Simulation 2 executes Algorithms 3 and 6 in parallel. In this case, the ob Web order variations and the delivery logic variations are
taken into account. The location is set to dcp in Brussels from which both Og and Ob are picked up.
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APPENDIX B

As explained in A.2, the OnlinePreference parameter contains values of type double between 0 and 1. The bounds and the random numbers
generated within the bounds are depicted by a uniform distribution function. The results presented in main body of the paper are based on
reproducible simulation runs with fixed random seeds, to preserve comparability of the results. In this appendix, the randomness of the
OnlinePreference parameter is captured by executing 10 replication of each simulation with unique random seeds. This means that, for
instance, 50% order placements were evaluated by a uniform distribution function that “flipped a coin between 0.0 and 1.0.” For 75%, for
instance, the function would flip a coin between 0.5 and 1.0. Hence, the order placement coming from the B group will not be precisely 50
or 75%, but may vary as illustrated in the replicated outputs below. The variations do not fluctuate wildly and show that the selected order
stream, depicted in the results section, is representative. The fluctuations are not so wild due to the fact that order placements which started
coming from other clusters were then accommodated by the corresponding van that services the cluster/municipality.
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Simulation 1 replications

Figure B1: Plotted averages of core orders’ lead times after 10 replications of Simulation 1. The left side represents priority deliveries
and the right en route.

Figure B2: Plotted averages of vans’ load factors after 10 replications of Simulation 1. The left side represents priority deliveries and
the right en route.
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Simulation 2 replications

Figure B3: Plotted averages of core orders’ lead times after 10 replications of Simulation 2. The left side represents van deliveries from
the original outside DC location, and the right side depicts deliveries from the central location.

Figure B4: Plotted averages of vans’ load factors after 10 replications of Simulation 2. The left side represents van deliveries from the
original outside DC location, and the right side depicts deliveries from the central location.
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Simulation 3 replications

Figure B5: Plotted averages of core orders’ lead times after 10 replications of Simulation 3. The left side represents transparent order
allocation of new B orders and the impact they have on the core G orders. The right side depicts dedicated allocation of B orders.

Figure B6: Plotted averages of extra B orders’ lead times after 10 replications of Simulation 3. The left side represents the impact of
transparent order allocation on B lead times, and the right side shows the impact of dedicated allocation.

Figure B7: Plotted averages of vans’ load factors after 10 replications of Simulation 3. The left side represents transparent order alloca-
tion and the right dedicated allocation to vans.
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