Digital Twin (DT) of Open Vehicle Powertrain Platform (OVPP) using Internet of Things (IoT)

EPOWERS Research Group MOBI Research Centre & ETEC Department Vrije Universiteit Brussel (VUB)

EFFICIENT POWER ELECTRONICS, POWERTRAIN & ENERGY SOLUTIC RESEARCH GROUP

FLANDERS MAKE

What in an OVPP?

»A scalable, modular, customizable powertrain testbed

»An Enhanced Hardware in the Loop Simulator (HiLS)

*Like HiLS, OVPP is used to test individual powertrain components, subsystems or entire drivetrains

*OVPP is also used for calibration and parametric testing

»A Real-time and realistic scenario generator *Real-time monitoring and control

*Realistic driving scenario using actual drivers

»An IoT connected DT model of hardware under test

*Accurately estimates lifetime of components based on scenario

- * Predictive maintenance of components based on scenario
- * Evaluate a variety of control algorithms on test hardware

OVPP System Overview

OVPP System Overview

OVPP Subsystem Details

OVPP consists of five main subsystems:

1. The driving simulator setup

- *Racing wheels (steering wheel with force feedback)
- * Pedal set (accelerator, resistance brake, clutch)
- *Vehicle seat
- * Driving Simulation software (Cars, buses, trucks)

2. The vehicle powertrain setup

- *Vehicle Control Unit (VCU) deployed to a real-time Rapid Control Prototyping (RCP) module
- *Battery and grid emulator to emulate the Energy Storage System (ESS) and DC/DC converter
- *In-wheel Motor System (IWMS) Drive to emulate the Electric Motor (EM), Inverter, and vehicle load

FLANDERS MAKE

* Water-based cooling system for the EMs and Inverters

OVPP Subsystem Details

OVPP consists of five main subsystems:

3. The IoT setup

- *Hall effect sensors to measure AC phase current output from inverter, DC current input to inverter *Voltage transducers to measure AC phase voltage output from inverter, DC voltage input to inverter
- *Thermocouples for temperature measurement
- *High speed data acquisition (DAQ) and aggregation module
- *High Performance Computing (HPC) system to provide the cloud interface to host the DT

4. The communications interface

- *Communication between the simulation software and VCU > transfers telemetry data from vehicle *Communication between the racing wheel and VCU > transfers driver inputs, i.e., steering, pedal, clutch, and gearbox data
- *Communication between the DAQ and the DT > transfers sampled measurement data
- *Communication between the VCU and DT > for tuning, validation and control
- * Display plots of driving cycle, map, altitude profile, and battery SoC profile in real-time
- *Communication interface developed in C#

OVPP Subsystem Details

OVPP consists of five main subsystems:

5. The DT model (virtual subsystem)

* Different tuning algorithms, including neural networks, to synchronize simulated outputs of the DT with the actual system measurements *Individual component models of EM, Inverter derived from FEM analysis of measurement test data using ANSYS Workbench *A Low fidelity (Lo-Fi) model for highspeed and real-time Superfast Grid Emulator simulation designed in MATLAB/Simulink 4-----> Data/Signals * Forward facing powertrain model of electric bus (e-Bus)

OVPP System Demonstration

- The driver responds according to the traffic scenario presented by the driving simulator
- Input from the driver (steering and pedal position) and the driving cycle from the bus simulator is used to control the EM drives
- The measurements from the drives are used to tune and validate the DT model of the vehicle powertrain

Please click to view the video demonstration.

OVPP Services Offered

- » Hardware in the Loop Tests of Powertrain Components charger (on and off board), gearbox and transmission, cooling system
- » Calibration & Parametric Tests of Powertrain Components * Using test protocols supplied by OEMs * Stress tests to determine limits of components
- » Tests of Control Algorithms * Energy, thermal, charging management * Vehicle control and performance

* Testing of ESS (Battery + BMS), Electric Motors and Inverters (drive), DC/DC converter,

* Realistic test scenarios with actual driving behavior according to actual traffic scenarios * Back-to-back testing capability. Can simulate a single actuator, or two wheels in a vehicle

OVPP Services Offered

- » Digital Twin of Powertrain Components
 - * High speed and parallel tests of replicas of virtual models
 - * Reliability and predictive maintenance calculations
 - * Numerous flexible test scenarios
 - * Accelerated lifetime modeling
- » Scalable, customizable and modular
 - * Test entire vehicle, subsystem, or component
 - * Customization according to OEM requirement
 - * Different vehicle types (light and heavy duty)
 - * Range of rated power

Sonents s of virtual models alculations

dular onent ement duty)

Contact Details:

Prof. Dr. Ir. Omar Hegazy Head of EPOWERS Research Group Email: omar.hegazy@vub.be Telephone: +32 2 629 2992 Mobile: +32 488 819 954 Skype ID: omar.hegazy@vub.be (Skype Business)

